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Abstract—Embedded systems are getting more complex; that is
why the high level of abstraction is required during the develop-
ment process. High abstraction methods simplify implementation
of complex computation systems and shorten the time to market.
This paper presents an implementation of a graphic computing
element (GCE) which can be used as a runtime parametrized
building block in image processing applications in FPGAs. In
terms of the object oriented model GCE encapsulates its internal
data representation and rules for their manipulation. Several
basic image processing operations have been implemented (Sobel
edge detection, Gauss, mean, etc. filtering). These operations are
called as GCE methods. Because of high spatial dependency of
image data in image processing, an efficient image data reuse
method has been implemented.

I. INTRODUCTION

Image processing is getting widely used in embedded sys-
tems for many applications, such as object detection, security
or video surveillance. Since application requirements can vary
in time, resources should be efficiently reused. One way to
reuse the same hardware resource is hardware reconfiguration.

In the case of general purpose image processing common
computational constructs have to be found. Many image pro-
cessing operations, e.g. edge detection, scaling, sharpening and
filtering, can be implemented using a discrete 2-D convolution
[1]. In general convolution is performed as a weighted sum
of neighbouring pixels, and requires a significant number of
operations which can be implemented in parallel on FPGAs
[4]. A set of neighbour weight values (coefficients) is called
a kernel. Discrete 2-D convolution is defined as:

f [x, y] = h[x, y] ∗ g[x, y] =
n∑

i=−n

n∑
j=−n

h[i, j]g[x− i, y − j].

(1)
Here, h[x, y] represents a convolution kernel and g[x, y]

represents an image. Convolution is a very general operator
in image processing, and can be modified easily by changing
its coefficient values; thus the convolution operator is suitable
for reuse in image processing.

An image operation implementation should be hidden from
the system point of view and only a set of image operation

capabilities should be known. One way to do so is to use the
object oriented model [2]. Systems should be composed of
interacting objects where their internal functional implemen-
tation is hidden. Combining the object oriented model and
the potential of a reconfigurable convolution core leads to an
implementation of a new class of hardware objects [3].

II. BACKGROUND AND RELATED WORK

The architecture of a graphic computing element (GCE)
is based on a previous work on basic computing elements
(BCEs) for acceleration of DSP operations. BCEs provide
high performance for floating point matrix computations [7].
The graphic computing element described here uses a similar
concept with a data flow unit and a simple control processor.
The simple control processor controls the data flow unit to
provide required functionality.

III. MEMORY ARCHITECTURE

Memory hierarchy is usually limited by the performance
and significant overhead of memory access transactions. It
is necessary to avoid duplicate memory accesses as much
as possible. In case of image processing high spatial data
dependency usually leads to duplicate read operations. The
following text describes the method to limit the number of
memory accesses.

When the convolution core is in use, it is necessary to keep
the number of image lines equal to the convolution matrix
height (CMH). Image filtration is done over the last CMH
image lines. It is necessary to keep the image line data in
the local GCE memory and to reuse some lines in the next
step when a new line is read. The last line (the oldest one) is
released and the new one is stored instead.

Image lines are stored in memories connected in chain.
While a new line is being stored in the first memory, old
values are stored in the next one and so on. This way the last
CMH−1 lines are reused. This results in a significant reduc-
tion of memory accesses. Without this reduction the number
of memory read accesses would be Image height ∗ CMH
and with the reduction Image height + (CMH − 1). The
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reduction R is asymptotically equal to:

R =
1

CMH
(2)

The convolution core accesses all image line memories in
the chain in parallel. Parallel access to the memory chain
enables fully pipelined processing.

It is possible to connect more memory chains together if
more convolution operations are provided. Such a connection
allows to share more image lines. Here a group of convolution
cores which cover continuous interval in the vertical direction
could share lines. Using this approach the number of memory
accesses can be reduced. Reduction RG can be expressed as:

RG =
1

GH
(3)

GH is length of the vertical continuous interval of convolution
cores group.

IV. RESULTS

For evaluation the Xilinx development kit ”XtremeDSP
Development Platform Spartan-3A DSP 3400A Edition” was
used. The graphic computing element was used in a design
with MicroBlaze system based on a PLB bus as the control
bus. A custom data bus provides high burst image data
transfers. The system clock rate was 62.5 MHz.

The Sobel edge detector [6] implementation was chosen as a
case study which is defined for image as a gradient magnitude
s(x) and can be computed as

s(x) =
√

∆1
2 + ∆2

2 (4)

where ∆1 and ∆2 represents horizontal and vertical gradient
operators. The gradient operators can be represented as con-
volution kernels which can be found in literature [1] and used
in equation 1.

In current GCEs the square root functional unit is not
presented and the Sobel is computed as s(x) = ∆1

2 + ∆2
2

and a multiplier is used for the square power operator.
Three variants of implementations were considered. The

first and second implementations use GCE with only one
convolution core (CC), and the third implementation uses GCE
with two convolution cores. GCE with two convolution cores
has all functional units doubled compared to GCE with one
convolution core. The first implementation is decomposed in
two separate steps driven by the MicroBlaze system. The
horizontal edge detection is performed first, and then vertical
edge detection is calculated and added with the previous result.
The second implementation uses the same operations, but it
is driven by a simple control processor (PicoBlaze) in GCE.
In this case the Microblaze system drives only one operation.
The operation implementation is hidden, and both convolution
operations are driven by the PicoBlaze firmware (FW). The
third implementation uses CGE with two convolution cores.
Both the horizontal and the vertical detection is processed
concurrently.

The performance results are summarized in Table I. The
frame processing time was measured by an oscilloscope.
Utilization of hardware resources is summarized in Table II.

Image dimension Frames per second
a) b) c)

640x480 33.62 46.42 64.58
800x600 24.65 32.99 47.08
1024x768 17.20 22.21 32.64

TABLE I
SOBEL IMAGE EDGE DETECTION FILTER IMPLEMENTATION PERFORMANCE

(@62.5MHZ) A) 1 X CONVOLUTION CORE, B) 1 X CONVOLUTION CORE
WITH FIRMWARE SUPPORT, C) 2X CONVOLUTION CORE

FPGA Resource Type 1x(CC, Add., Mul.) 2x(CC, Add., Mul.)
Slices 1304/23872 (5.5%) 2157/23872 (9.0%)
FFs 1632/47744 (3.4%) 2761/47744 (5.8%)
LUTs 1831/47744 (3.8%) 2955/47744 (6.2%)
BRAMs 13/126 (10.3%) 20/126 (15.9%)

TABLE II
GRAPHIC COMPUTATION ELEMENTS HARDWARE RESOURCES UTILIZATION

SUMMARY (XILINX SPARTAN-3A DSP 3SD3400AFG676-4)

V. CONCLUSION

This paper presented an implementation of a graphic com-
puting element which supports image data reuse. Image ap-
plications require a lot of memory space to store image
information. DDR memory can provide enough space, but
in the memory hierarchy the DDR memory access has a
significant overhead for access transactions. Image data reuse
reduces the number of main memory accesses, thus it increases
the performance. In our implementation image data are shared
over a set of convolution cores, operations can be performed
concurrently, and their results can be combined on the fly.
Groups of elementary filters can be combined to form appli-
cations using the boosting algorithm [5] or multiple image
pattern correlations.
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